ZK Watcher Documentation
Release

Nextdoor Engineering

December 17, 2015

Contents

1 About

1

1.1 Installation 0 e e e e e e e e e e e 1

1.2 RUNNING . . . o e e e e e e e e e e e e 2

1.3 Authentication o e e e e e e e e e e 4

2 Indices and tables 5

CHAPTER 1

About

zk_watcher is a simple service that registers Ephemeral Nodes in Apache Zookeeper based on the result of a
healthcheck. The service is available both as a Python script that you can run on your own, or as a Docker image
(nextdoor/zkwatcher) that you can pull down.

The goal of zk_watcher is to monitor a particular service and register that machine as a provider of that service
at a given path on the Zookeeper service.

A simple example is having zk_watcher monitor Apache httpd by running service apache2 status ata
regular interval and registers with ZooKeeper at a given path (say /services/production/webservers). As
long as the command returns a safe exit code (0), zk_watcher will register with ZooKeeper that this server is
providing this particular service. If the hostname of the machine is web1l.mydomain. com, the registration path
would look like this

/services/production/webservers/webl.mydomain.com: 80

In the event that the service check fails, the host will be immediately de- registered from that path.

1.1 Installation

1.1.1 Local Python Install

To install the application locally, run :

$ python setup.py install

or

‘3 pip install zk_watcher

1.1.2 Docker Container Installation

You can pull down the latest builds of zk_wat cher built into a fully self-sufficient Docker image like this:

S docker pull nextdoor/zkwatcher

Using default tag: latest

latest: Pulling from nextdoor/zkwatcher

Digest: sha256:47eee56494a190e35c5d25d2285056d0ele347ee276d7792973£fb803511dal0a
Status: Image is up to date for nextdoor/zkwatcher:latest

http://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#Ephemeral+Nodes
https://hub.docker.com/r/nextdoor/zkwatcher/

ZK Watcher Documentation, Release

1.2 Running

1.2.1 Docker Execution
When running as a Docker container, you can use nextdoor/zkwatcher to monitor a single service. The service
is configured by passing in the following ENVIRONMENT variables into your Docker runtime.
Required Variables
e ZK_PATH: The path in Zookeeper to register the Ephemeral node.
* SVC_HOST: The hostname/IP that will be registered under ZK_PATH
* SVC_PORT: The port that will be registered along with the SVC_HOST
e CMD: The command that will be called to check the service.
Optional Variables
* REFRESH: The time to wait between executions of the CMD (default: 30)
* ZOOKEEPER_HOST: The Zookeeper Host/IP Endpoint (default: SDOCKER_HOST_IP)
* ZOOKEEPER_PORT: The Zookeeper TCP Port (default: 2181)
* VERBOSE: Set to t rue to enable verbose logging.
Dynamically Populated Variables

* DOCKER_HOST_IP: This variable is dynamically generated and is the docker host IP address that the
container sees. It effectively works out to 1ocalhost inside a normal host OS.

Checking a Docker Host Service

The one interesting bit about this execution is the CMD below. We pass in an _escaped_ variable, and that variable will
be evaluated later once the container actually starts. In this case, it allows us to let the container use one of the above
dynamically populated variables.

S docker run \
——env ZK PATH=/ssh_services \
_HOST=$ (hostname -f) \
——env SVC PORT=22 \
——env CMD="nc -v -z -w 1 \SDOCKER_HOST_IP 22" \
zk_watcher

——env S

Starting zk_watcher up with the following config:
[service]

cmd: nc -v -z -w 1 172.17.0.1 22

refresh: 30

service_port: 22

service_hostname: vagrant-ubuntu-trusty-64
zookeeper_path: /ssh_services

zk_watcher[16] [WatcherDaemon] [_ _init_]: (INFO) WatcherDaemon 0.3.2

zk_watcher[16] [nd_service_registry] [__init__]: (INFO) Initializing ServiceRegistry obj
zk_watcher[16] [nd_service_registry] [_connect]: (INFO) Connecting to Zookeeper Service
zk_watcher[16] [nd_service_registry] [_state_listener]: (INFO) Zookeeper connection stat
zk_watcher[16] [nd_service_registry] [__init__]: (INFO) Initialization Done!

172.17.0.1 (172.17.0.1:22) open

zk_watcher[16] [nd_service_registry.registration] [_create_node]: (INFO) [/ssh_services

Monitoring a different Docker Container

2 Chapter 1. About

ect
(172.17.0.1::
e changed: C«

vagrant-—ubun

ZK Watcher Documentation, Release

The more likely use of this container is to monitor a separate container and register that in Zookeeper. Here’s a simple
example of registering an Apache “hello world” container. We make use of Docker container linking and the variables
that they create for you (SAPACHE_PORT_80_TCP_ADDR and $SAPACHE_PORT_80_TCP_PORT in this case) to
discover the hello-world containers IP and Port.

$ docker run -d --name hello-world tutum/hello-world
77a83d2be90f52541b1¢c8e54e5895a0d0¢c435d07af2da87d288693f54976e232
vagrant@vagrant—-ubuntu-trusty-64:~/src$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

77a83d2be90f tutum/hello-world "/bin/sh -c 'php-fpm " 2 seconds ago Up
S docker run \

——env SVC_HOST=$ (hostname -f) \
——env SVC_PORT=80 \
——env CMD="curl --fail http://\SAPACHE_PORT_80_TCP_ADDR:\SAPACHE_PORT_80_TCP_PORT" \

—-—env ZK_PATH=/hello_world —--link "hello-world:apache"
zk_watcher

Starting zk_watcher up with the following config:
[service]

cmd: curl --fail http://172.17.0.2:80

refresh: 30

service_port: 80

service_hostname: vagrant-ubuntu-trusty-64
zookeeper_path: /hello_world

zk_watcher[16] [WatcherDaemon] [_ _init_]: (INFO) WatcherDaemon 0.3.2

zk_watcher[16] [nd_service_registry] [__init__]: (INFO) Initializing ServiceRegistry obj]
zk_watcher[16] [nd_service_registry] [_connect]: (INFO) Connecting to Zookeeper Service
zk_watcher[16] [nd_service_registry] [_state_listener]: (INFO) Zookeeper connection stat
zk_watcher[16] [nd_service_registry] [__init__]: (INFO) Initialization Done!

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 478 0 478 0 0 53871 0 ——i——:1—— ——i——:—-— ——:;——:—— 59750
zk_watcher[16] [nd_service_registry.registration] [_create_node]: (INFO) [/hello_world/¥

1 seconds

ect
(172.17.0.1:
e changed: (¢

ragrant—ubuntt

1.2.2 Commandline Execution

Assuming that you’ve followed the installation guide and installed zk_wat cher locally, you can run it on the com-
mandline with the following arguments.

zk_watcher —--help
Usage: zk_watcher <options>

Options:
—--version show program's version number and exit
-h, —--help show this help message and exit

—-c CONFIG, --config=CONFIG
override the default config file (/etc/zk/config.cfq)
—-s SERVER, —-—-server=SERVER
server address (default: localhost:2181
-v, ——-verbose verbose mode
-1, —--syslog log to syslog

Service Configs

The service itself reads in a configuration file (—c) that is filled with sections. Each section represents a single unique
path that zk_wat cher will register a node at, and the corresponding check information.

1.2. Running 3

ZK Watcher Documentation, Release

A configuration file that checks two different services could look like this:

[ssh]

cmd: /etc/init.d/sshd status

refresh: 60

service_port: 22

service_hostname: 123.234.123.123

zookeeper_path: /services/ssh

zookeeper_data: { "foo": "bar", "bah": "humbug" }

[apache]

cmd: /etc/init.d/apache status
refresh: 60

service_port: 22

zookeeper_path: /services/web
zookeeper_data: foo=bar, bah=humbug

1.3 Authentication

If you wish to create a Digset authentication token and use that for your client session with Zookeeper, you can add

the settings to the config file like this

[auth]
user: username
password: 123456

If you do this, please look at the nd_service_registry docs to understand how the auth token is used, and what

permissions are setup by default.

Chapter 1. About

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

	About
	Installation
	Running
	Authentication

	Indices and tables

